9-1 day 1 Infinite Series

Learning Objectives:

I can find the sum of a geometric series (finite or infinite)

I can use a limit of a sequence of partial sums to find the sum of an infinite series

I can determine if a simple infinite series converges or diverges.

I can use the nth term test for divergence to determine if an infinite series diverges.

So the proper way to think about the sum of an infinite series is:

$$\lim_{n\to\infty}\sum_{k=1}^n a_n$$

So, in the previous example

$$\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}, \frac{63}{64}$$
....

We would think of this as a limit of the sequence of partial sums

nth Term Test for DIVERGENCE

If $\lim_{n\to\infty} a_n \neq 0$, then series diverges.

Please note that the converse is NOT TRUE:

If $\lim_{n \to \infty} a_n \neq 0$, the series converges. IS FALSE! In reality, if $\lim_{n \to \infty} a_n \neq 0$ the series may converge or may diverge. What the theorem is saying is that if the limit isn't 0, the series must diverge. It says nothing about converging.

Arithmetic Series

Since $\lim_{n\to\infty} a_n \neq 0$ in an arithmetic series, we can conclude that NO infinite arithmetic series will ever converge. Hence, they aren't very interesting and we won't talk about them anymore.

Geometric Series

 $a_n = a_1 \cdot r^{n-1}$ will converge if |r| < 1 (terms getting smaller) and will diverge if $|r| \ge 1$ (terms getting bigger)

9-1 day 1 BC Calc (2_11_15).notebook

 $D \sum_{a^{n}}^{3} = \sum_{a^{n}}^{a^{n}} (\frac{1}{a^{n}}) = \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots$ n=1 n=1 r=1/2 so the series [converge] $S = \frac{\alpha_1}{1-\gamma} = \frac{3/2}{1-\gamma} = \frac{3/2}{\gamma_2} = \frac{3}{3}$ 2) $\sum_{n=1}^{7} \left(\frac{3}{2}\right)^{n} = \frac{3}{2} + \frac{9}{4} + \frac{27}{8} + \frac{1}{4}$ r= 3/2 so the series diverges to 00. $S = \frac{q_1}{1-r} = \frac{1}{1-r/2} = \frac{1}{4/3} = \frac{3}{4}$ F) e+ e2 + e3 + e4 + $r = \frac{e}{3} \approx ,906$ so the series converges $S = \frac{a_1}{1-r} = \frac{e}{1-q_1} = \frac{a_2}{3-e} = \frac{a_1}{1-q_2} = \frac{a_2}{3-e}$ 00) $\leq 1 - \frac{1}{n}$ lim $1 - \frac{1}{n} = 1$ diverges since lim an to, the series cannot converge. Series diverges! $OS' \left(\frac{1}{n} - \frac{1}{n+1}\right) = \lim_{m \to \infty} \sum_{r=1}^{m} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ $= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots (\frac{1}{m} - \frac{1}{m}) + (\frac{1}{m} - \frac{1}{m})$ ping $= 1 - \frac{1}{m} \qquad \lim_{m \to \infty} 1 - \frac{1}{m} = 1$ this means that the series connerges and its sum is 1.

Feb 13-12:31 PM

<u>Homework</u> Pg 418 # 1-20, 35, 48, 66-68